Transfert en cours..., vous êtes sur le "nouveau" serveur data.abuledu.org dont l'hébergement est financé par l'association abuledu-fr.org grâce à vos dons et adhésions !
Vous pouvez continuer à soutenir l'association des utilisateurs d'AbulÉdu (abuledu-fr.org) ou l'association ABUL.
Suivez la progression de nos travaux et participez à la communauté via la liste de diffusion.

Votre recherche ...

Nuage de mots clés

Dessins et plans | Géométrie | Courbes algébriques | Coordonnées (mathématiques) | Trigonométrie | Fonctions trigonométriques | Chimie | Courbes | Surfaces courbes | Physique | Aérodynamique | Eau | Bateaux à voiles | Motifs (art décoratif) | Entrelacs | Rubans | Décoration florale | Arts décoratifs -- Motifs du règne végétal | Sections coniques | Niveau marin | ...
Trois courbes planes Limaçons. Source : http://data.abuledu.org/URI/504903d3-trois-courbes-planes-limacons

Trois courbes planes Limaçons

Trois courbes planes Limaçons.

Analyse thermo-gravimétrique. Source : http://data.abuledu.org/URI/50c6f05d-analyse-thermo-gravimetrique

Analyse thermo-gravimétrique

Schéma d'appareil utilisé pour l'analyse thermo-gravimétrique (ATG) ; le tuyau d'eau de refroidissement a été omis. L'analyse thermogravimétrique (ATG), en anglais thermogravimetric analysis (TGA), est une technique d'analyse thermique qui consiste en la mesure de la variation de masse d'un échantillon en fonction de la température. Une telle analyse suppose une bonne précision pour les trois mesures : masse, température et variation de température. Comme les courbes de variations de masse sont souvent similaires, il faut souvent réaliser des traitements de ces courbes afin de pouvoir les interpréter. La dérivée de ces courbes montre à quels points ces variations sont les plus importantes. Un appareil se compose typiquement d'une enceinte étanche permettant de contrôler l'atmosphère de l'échantillon, d'un four permettant de gérer la température, d'un module de pesée (microbalance), d'un thermocouple pour mesurer la température et d'un ordinateur permettant de contrôler l'ensemble et d'enregistrer les données.

Bogies et essieux. Source : http://data.abuledu.org/URI/52d6efc2-bogies-et-essieux

Bogies et essieux

Représentation d'un véhicule (profilé en bleu) équipé de deux bogies (en jaune orangé). Les essieux sont figurés en rouge. L'utilisation des bogies permet la circulation sur une voie dont le rayon de courbure est relativement faible. La fonction essentielle des bogies est de faciliter l'inscription en courbe. En effet, les bogies du véhicule peuvent pivoter indépendamment les uns des autres, ce qui autorise des rayons de courbure plus faibles, et un éloignement plus important entre les essieux (qu'ils soient moteurs ou porteurs). Source : http://fr.wikipedia.org/wiki/Bogie.

Cambrure de voile. Source : http://data.abuledu.org/URI/50b0d8ba-cambrure-de-voile

Cambrure de voile

Évolution des coefficients aérodynamiques suivant la cambrure de la voile. Les courbes de portance (et traînée) en fonction et de l'angle d'attaque dépendent de la cambrure de la voile, c'est-à-dire de la forme plus ou moins prononcée du creux de la voile. Une voile à forte cambrure a un coefficient aérodynamique plus élevé, donc potentiellement un effort propulsif plus important. Par contre le coefficient aérodynamique engendrant la gîte varie dans le même sens, donc il faudra suivant les allures trouver une cambrure de compromis entre un effort propulsif important et une gîte acceptable.

Coloriage géométrique. Source : http://data.abuledu.org/URI/533289fa-coloriage-geometrique

Coloriage géométrique

Coloriage géométrique.

Équations proie-prédateur de Lotka-Volterra. Source : http://data.abuledu.org/URI/50bf7632-equations-proie-predateur-de-lotka-volterra

Équations proie-prédateur de Lotka-Volterra

Courbes d'évolution d'un système complexe, formé de deux espèces, proie et prédateur : équations de Lotka-Volterra. L'effectif des proies est x(t), celui des prédateurs y(t) . On retombe sur le cas précédent si y est nul. La quantité x(t)y(t) est une probabilité de rencontre, qui influe négativement sur une population (les proies), positivement sur l'autre (les prédateurs). À chaque instant, connaissant les populations en présence, on peut décrire la tendance. Ces deux équations sont couplées c'est-à-dire qu'il faut les résoudre ensemble. Mathématiquement, il faut les concevoir comme une seule équation d'inconnue le couple (x(t),y(t)) . Si l'effectif initial des populations est connu, l'évolution ultérieure est parfaitement déterminée. Elle se fait le long d'une des courbes d'évolution figurées ci-contre, qui laissent apparaître un comportement cyclique.

Influence de la position du creux sur la voile. Source : http://data.abuledu.org/URI/50b0d942-influence-de-la-position-du-creux-sur-la-voile

Influence de la position du creux sur la voile

Influence de la position du creux sur la voile : Les courbes de portance (et traînée) en fonction de l'angle d'attaque dépendent aussi de la position du creux de la voile, plus ou moins proche du guindant.

L'optique de Képler. Source : http://data.abuledu.org/URI/50b0ac37-l-optique-de-kepler

L'optique de Képler

Planche de Johannes Kepler "Ad Vitellionem Paralipomena, quibus Astronomiae Pars Optica" (1604), illustrant la structure de l'oeil. Dès 1603, il parcourt divers ouvrages sur le sujet dont celui de l’Arabe Alhazen. Kepler rassemble les connaissances de l’époque dans son livre "Astronomia pars Optica", publié en 1604. Il y explique les principes fondamentaux de l’optique moderne comme la nature de la lumière (rayons, intensité variant avec la surface, vitesse infinie, etc.), la chambre obscure, les miroirs (plans et courbes), les lentilles et la réfraction dont il donne la loi i = n×r, qui est correcte pour de petits angles (la vraie loi — sin i = n×sin r — fut donnée plus tard par Willebrord Snell et René Descartes). Il aborde également le sujet de la vision et la perception des images par l’œil. Il est convaincu que la réception des images est assurée par la rétine et non pas le cristallin comme on le pensait à cette époque, et que le cerveau serait tout à fait capable de remettre à l’endroit l’image inversée qu’il reçoit.

Liberté de la presse en Europe de 2002 à 2010. Source : http://data.abuledu.org/URI/5942ff4f-liberte-de-la-presse-en-europe-de-2002-a-2010

Liberté de la presse en Europe de 2002 à 2010

Courbes montrant l'évolution de la liberté de la presse dans divers pays européens selon le classement établi par "Reporters Sans Frontières" de 2002 à nos jours.

Ménisque de l'eau. Source : http://data.abuledu.org/URI/5287aee9-menisque-de-l-eau

Ménisque de l'eau

Schéma du ménisque de l'eau au niveau moléculaire. Le ménisque est la surface courbe d'un liquide ; il apparaît en réponse à la surface du contenant ou d'un autre objet. La mesure précise d'un volume de solution aqueuse à l'aide d'une burette utilise la méthode du ménisque concave.

Ménisque de l'eau. Source : http://data.abuledu.org/URI/5287af7b-menisque-de-l-eau

Ménisque de l'eau

Lecture du ménisque de l'eau : A : le ménisque est orienté vers le bas, il est concave ; B : le ménisque est orienté vers le haut, il est convexe.

Plan de l'oppidum de Bibracte. Source : http://data.abuledu.org/URI/5079a990-plan-de-l-oppidum-de-bibracte

Plan de l'oppidum de Bibracte

Plan d'ensemble de la cité de Bibracte, les noms de lieux correspondent aux dénominations actuelles et les courbes de niveau ne sont prises qu'au niveau des sommets. Source : C. Goudineau et C. Peyre, Bibracte et les Éduens. À la découverte d'un peuple gaulois, éditions Errance, 1993.

Plane. Source : http://data.abuledu.org/URI/51c469e0-plane

Plane

La plane ou couteau à deux manches est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la lame. Elle permet le dégrossissage et le creusage de formes courbes, galbées et même droites. On s'en sert essentiellement pour enlever l'écorce d'un morceau de bois que l'on veut travailler. On manie la plane en la tirant vers soi.

Principe des courbes de niveau. Source : http://data.abuledu.org/URI/55798a09-principe-des-courbes-de-niveau

Principe des courbes de niveau

Principe des courbes de niveau. Une courbe de niveau ou isoplèthe d’altitude est, en cartographie, une ligne formée par les points du relief situés à la même altitude. Source : http://fr.wikipedia.org/wiki/Courbe_de_niveau

Propriétés des acides aminés. Source : http://data.abuledu.org/URI/50ce35ed-proprietes-des-acides-amines

Propriétés des acides aminés

Diagramme de Venn des propriétés des acides aminés, John Venn (1834-1923) opéra plusieurs modifications importantes dans la représentation eulérienne des attributs : 1) remplacement des cercles par des courbes fermées simples (sans points doubles ; par exemple des ellipses), 2) utilisation dans tous les cas d'une unique représentation pour chaque ensemble de n attributs, dans laquelle toutes les conjonctions possibles p à p des attributs existent, 3) coloration (grisé ou hachures) des régions connues comme « vides » (conjonctions qu'on sait impossibles), 4) indication par un signe graphique des régions connues comme « non vides » (conjonctions qu'on sait possibles).

Quatre trajectoires des comètes. Source : http://data.abuledu.org/URI/51830746-quatre-trajectoires-des-cometes

Quatre trajectoires des comètes

les quatre différentes trajectoires de comètes : les coniques forment une famille de courbes planes résultant de l'intersection d'un plan avec un cône de révolution.

Représentation graphique de la fonction Tangente. Source : http://data.abuledu.org/URI/5309d1fe-representation-graphique-de-la-fonction-tangente

Représentation graphique de la fonction Tangente

Représentation graphique de la fonction Tangente.

Ruban entrecroisé. Source : http://data.abuledu.org/URI/506d64ed-ruban-entrecroise

Ruban entrecroisé

Décor géométrique classique d'entrecroisement de ruban : les entrelacs sont une forme d'ornement fondée sur la répétition de motifs de courbes entrelacées, plus ou moins complexes, entrecroisées et enchevêtrées, évoquant les nœuds qu'on peut faire avec des cordes.

Sinusoïde. Source : http://data.abuledu.org/URI/5309d07f-sinusoide

Sinusoïde

Sinusoïde, représentation graphique de la fonction sinus.

Sinusoïde. Source : http://data.abuledu.org/URI/5309d16a-sinusoide

Sinusoïde

Sinusoïde, représentation graphique de la fonction cosinus.

Solstices et équinoxes. Source : http://data.abuledu.org/URI/52bd5102-solstices-et-equinoxes

Solstices et équinoxes

Positionnement des solstices et des équinoxes sur une fonction sinusoïdale. La hauteur du Soleil dans le ciel en fonction du temps s'apparente à une oscillation harmonique simple. Les solstices correspondent à l'amplitude maximale (S), où la variation de position varie momentanément plus lentement en fonction du temps. Les équinoxes correspondent aux positions nulles (E). Ils marquent la mi-temps entre les solstices et leur cycle est en déphasage d'un quart de période sur ces derniers.

Un coeur symétrique et algébrique. Source : http://data.abuledu.org/URI/5330bdc1-un-coeur-symetrique-et-algebrique

Un coeur symétrique et algébrique

Formule algébrique pour dessiner un coeur symétrique.

Variations des températures depuis 1880. Source : http://data.abuledu.org/URI/50c76f41-variations-des-temperatures-depuis-1880

Variations des températures depuis 1880

Variations des températures de surface depuis 1880 : Ce graphique montre bien l'écart minimal de l'élévation des températures entre des causes de réchauffement naturel et des causes liées aux gaz à effet de serre selon le GIEC. Une élévation de la température moyenne de +0,8°C dans les décennies à venir deviendrait très difficile à expliquer par des causes naturelles. Le GIEC prévoit une température moyenne à +0,8°C dès 2020. Entre les 2 courbes, on aurait un réchauffement climatique engendré par des causes naturelles et anthropiques, qui sont des théories soutenues par d'autres sceptiques des thèses du GIEC. --cartedd # 10 mars 2010 à 12:59 (CET)

Ventilation de grain. Source : http://data.abuledu.org/URI/50bb2ef2-ventilation-de-grain

Ventilation de grain

Stockage des grains : représentation sur un diagramme psychrométrique de Carrier du séchage et du refroidissement d'une masse de grain par ventilation. Lors d’une opération de ventilation, l’air extérieur ( heta_{1} ; HR_{1}) arrive dans la zone inférieure déjà refroidie. Il se refroidit en évaporant de l’eau au détriment de sa propre chaleur : le point représentatif se déplace donc sur une droite isenthalpe jusqu’à ce que l’équilibre avec le grain soit établi ( heta_{2} ; HR_{2}). Cette transformation correspond au front de séchage et aboutit à un point d'équilibre qui marque la fin du séchage isenthalpique. Le point correspond alors à une humidité relative de l'air HR_{2} qui est imposée par la courbe de sorption-désorption du grain. Dans la zone de transition, l’air évolue sensiblement à humidité constante mais élève sa température jusqu’à atteindre celle du grain heta_{3} : le point représentatif évolue donc sur une courbe HR constante. Cette transformation correspond au front de refroidissement.